FutureTech

Emerging technologies for more sustainable ICT

'Internet of Things' Will Rerquire More Storage and Bandwidth

We've counted over 17 billion pieces of e-gear attached to the global ICT infrastructure. The 'Internet of Things' will increase this number five-fold by the end of the decade. Can technology keep up with the energy and resource demands?

DC Power Distribution for ICT Gaining Ground

Most ICT gear - core facilities, communications infrastructures, and edge devices - runs on DC power. Converting AC to DC within a building is inefficient, on-site renewable power generation is usually DC to begin with, and super-efficient LED lighting is also DC. So DC power distribution has been a attractive option, but there have been vigorous arguments for and against. Recent events suggest the tide is turning in favor of DC distribution, although skeptics continue to press their case. The growing use of solar-generated electricity might be providing the latest boost DC.

Image courtesy IEEE Spectrum

How Green is Wearable Tech?

Wearable tech is of interest to Green ICT because it can drive miniaturization and energy efficient. Miniaturization can reduce resource consumption in the creation of ICT gear and reduce e-waste in its disposal. Miniaturization combined with energy-efficiency can enable a host of applications ranging from "smart building" sensors to compact assistive technology. Is more wearable tech all positive? We look at a number of global trends and technologies.

Non-Chemical Batteries Emerge for ICT Facilities and Infrastructure

What is a battery? A device to store energy and convert it to electricity on demand? This is an important question as ICT facilities and infrastructure elements increasingly rely on sophisticated battery-based systems such as UPS. Potentially greener alternatives are emerging to chemical batteries, with flywheels appearing to have the most momentum for ITC facilities going into 2013.

Let's start by reviewing the role energy storage devices play in ICT. A 2011 APC white paper lists three applications:

Sewage Powers Microsoft's Zero Carbon Data Center

Microsoft has announced plans to spend $5.5 million to build a zero-carbon data center pilot project in Wyoming. A source of very low carbon electricity is key to such projects. Microsoft's power generation fuel? Municipal sewage!

Standby Power Is an Issue at the IC Scale, Too

We've covered the issue of 'vampire devices": excessive standby power consumption in consumer electronics and other ICT components. As integrated circuits become more power-efficient during operation, their standby power consumption becomes an issue, too. A research group at Japan's Center for Spintronics Integrated Systems and Research Institute of Electrical Communication of Tohoku University together with NEC Corporation (NEC) has developed a standby-power-free large-scale integrated circuit (LSI).

Memory at Very Small Scales

Two technology advances point to the promise of more more energy-efficient memory. One is described as "nanoscale", the other "atomic scale". The latter comes with a video.

Computing Benchmarks for Energy Efficiency

Interest in energy-efficient computing has sparked a Vertatique discussion of energy-sensitive benchmarks beginning in 2007. We originally saw pages per kilowatt hour, "MIPS / Watt" or "Flops / Watt" and Peter Kooge's "performance / joule". More have since been proposed, including one from focused on CO2e, but none have emerged as definitive.

Ethernet-Powered LED Lighting

Facebook mentions in passing that its highly efficient Prineville data center uses "Ethernet-powered LED lighting [to] reduce the total energy required to run the facility." Additional information about what exactly Facebook has done is hard to fine. What is Ethernet-powered LED lighting?

Syndicate content